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Abstract 

First steps towards a discrete theory of observation are developed by using algebraic 
topological concepts, and are shown to account for finite limits of resolution. The 
cohomology ring on a basic simplicial complex is claimed as the natural language of 
physical theory. This is illustrated by specific examples and a complete set of generators 
for such a ring will be called the Eddingtonian of a system. 

The concept of tensorial covariance is logically replaced by that of an isomorphism 
between base homologies induced by a bijective simplicial map. This is applied to velocity 
space to produce an abstract form of the Lorentz-Einstein relativity theory and also 
to discuss an experimental diffraction arrangement devised by Bohm and Aharonov. 
The latter is shown to be homologically equivalent to the problem of the red shift, and 
consequently throws light on the question of galactic recession. 

1. Introduction 

Two discrete algebraic theories o f  the limits on observation in quantum 
theory and cosmology which have been put  forward respectively by the 
writers (Atkin, 1968; Bastin, 1966) will be shown in this paper  to have a 
c o m m o n  mathematical  basis. 

By a discrete theory we mean one in which the items of  knowledge or  
information about  a physical situation or physical object in given circum- 
stances constitute a finite set. Current  physics is a continuum theory, and 
what  we mean by this can be expressed in the foregoing terminology, as 
follows. A continuum theory is a theory in which it is assumed that  by 
refining the experimental arrangement  (i.e. the circumstances o f  measure- 
ment  or  o f  observation) we can obtain a set o f  higher cardinality, and that  
this process of  refinement can be extended indefinitely. Any  discrete theory 
has to contend with the deep-seated classical assumption of  continuity;  
this assumption has the effect that  difficulties in the construction o f  point-  
spaces are usually not  taken seriously--i t  is assumed that  they can safely 
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be ignored. In this paper we question this assumption and ascribe the 
existence of limits of observation in the quantum domain and in cosmological 
systems to its invalidity. 

Given a finite set we require, on the one hand, that new sets of greater 
cardinality (though not necessarily indefinitely greater) can be derived 
from it and, on the other hand, that some suitable structure associated 
with the set possesses observational significance, and that this structure 
persists in the new set independently of its cardinality. We build on the 
structure we have already established about an object. For example, in 
the classical idea of the curvilinear motion of a point-particle an important 
structure is that of a simple ordering, and this must persist when we increase 
the cardinality of the set of points which constitute the line. 

The structures derived from physical observation will be represented in 
this paper by simplicial complexes and their associated homological and 
cohomological algebras. This representation will give us a natural way of 
describing progressive resolution, or refinement of observation, and the 
limits thereto. 

Two physical problems which would normally require continuum 
dynamics and which will have a paradigmatic role in future developments 
Of the present theory will be solved. 

2. Discrimination 

Bastin and Parker-Rhodes formulated a discrete theory which was 
capable of representing refinement of observation by exploiting the idea of 
discrimination. This idea was considered to be the expression in 19gical 
terms of the universal operation which results in the generation of physical 
entities and which proceeds according to definite rules which then necessarily 
cover the process we know as observation. If there exists a set of entities 
already generated, then two entities in the set may be related under the 
operation of discrimination, as a result of which a record exists that those 
entities are unlike. If they are not unlike then no discrimination process 
takes place. The result of the operation on those two entities is itself a 
member of the set which may or may not already exist, and upon which 
discrimination may take place. Two general consequences follow: 

(1) The sets of discriminable entities are generated in a hierarchy of 
stages. 

(2) The epistomological innovation of quantum theory, according to 
which the obtaining of information by observation itself affects the 
physical system, has a counterpart in the method of construction 
of point sets by the discrimination process. 

The definition of discrimination as the operation of symmetric difference 
on ordered sets of binary entities led to a physical interpretation for those 
subsets which were closed under discrimination. A hierarchy of discriminable 
sets was therefore established. 
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The idea of discrimination as a basic physical process is not new in 
physics. Rosenfeld (1949) has pointed out that the spin vector has a natural 
interpretation as a means of establishing dichotomous choice. He calls it a 
dichotomic variable. Rosenfeld would have to find a way of regarding all 
other quantum theoretical variables on the same pattern if this observation 
were to be more than a curiosity, and he makes no such attempt. This, 
however, is just what we want to do, and Rosenfeld's observation is signi- 
ficant for us because it means that we can link our discrimination idea with 
existing physics at an early stage. 

The approach to discrete theory followed by Atkin (1965) began with a 
development of the intuitive notion of a scale as a generalisation of such 
simple scaling devices as a mercury thermometer--and the peculiar 
significance of the bilinear relation in the mathematics associated with it. 
The pattern of such a scale was then introduced into mathematical physics 
(Atkin, 1968) via the concept of a Cech homology on compact manifolds. 

Our aim now is to explain how the discrimination process may be seen 
to determine the choice of p-cycles in a certain simplicial complex and how 
to use this complex, with its homological structure (Hilton & Wylie, 1962), 
to define an abstract 'measurement situation', or scale. 

We attach to the set of observations (and here we shall refer to the 
members of the set as points) one more 'point', namely, the complement of 
the set. It seems appropriate to refer to this as the antipoint, and we shall 
denote it by ~.  Since the set of entities is defined by the physical process of 
discrimination there is no mixture of types involved; the 'set' ~ contains 
non-discriminable members and therefore has cardinality unity. Let us now 
suppose that the cardinality of the original set of observations, without the 
antipoint, is n. Then, denoting this set by S, we can see that the process of 
discrimination is a physical means of defining a totally disconnected 
simplicial complex Ko(S). The number of topological components is n, 
and this is also the zero-order Bettinumber [3o (= n). This in turn is equivalent 
to saying that n independent 0-cycles [z0~; i = 1 . . . .  , n] are discriminated (or 
'seen') in the given measurement situation. These z0 * are labels for the 
points of S; we shall denote the whole set of them by Z0 when we wish to 
emphasise the view of the points as 0-cycles. 

Now we ask whether subsets of S--pairs, triples, etc.,--can be dis- 
criminated. Such observational possibilities require new levels in the 
discrimination process, an extension of the discriminatory ability. First 
let us look at the situation when a particular pair of points, A and B, have 
been discriminated--in the sense that we can observe the set [A,B] con- 
taining two unordered members, so that in the first instance A and B are 
known to be members of Z0. We then identify the discrimination of A with 
that of the equivalent pairs [Z,A]  and [A, ~]  in the extended set S U ~ .  
It follows that discriminating the pair [A,B] is equivalent to determining 
a typical 1-cycle in a simplicial complex K~ +(S) via the formal combination 

z ,  = [ z , A l  + [A,~] + [S, z]  
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The simplicial complex Kl + is obtained from Ko by 

(i) augmenting the vertex set Z0 by forming the union Z0 U 
(ii) adjoining to the new vertex set the 1-simplices defined by the pairs 

[~ ,A] ,  [A,B] and [B, z ] .  

In general we would expect this extended discrimination process to 
determine a whole set of 1-cycles, Z~, on a suitable K~ +; the cardinality of 
Z~ being ill, the first-order Betti number of K~ +. (This is making the 
assumption, which we shall adhere to in this paper, that the homology 
groups are torsion free.) Furthermore we would expect a whole series of 
p-cycles, for various integral values of p, giving us the sets Z0, Z~,... ,  Zp,..., 
Z,_~--eachp-cycle corresponding to the discriminatory ability to determine 
a subset o f ( p  + 1) points of Z0. 

We now adopt the discriminable p-cycle as the mathematical concept in 
our theory which corresponds to the physical observation. We shall use 
the word object (or p-object) to describe any observable p-cycle. We have, 
of  course, a problem of reconciling this mathematical treatment of observa- 
tion by discrimination with the elementary logical operation by which 
discrimination was introduced. This problem is the counterpart of  the 
notoriously intractable measurement problem in current quantum theory. 
It  is possible that the difficulty in our case is easier to come to terms with 
however, just because we encounter it at such a rudimentary stage in our 
theory. In both cases we appear to be confronted with the difficulty that the 
elementary interactions in terms of which the theory is formulated are 
microscopic, whereas measurement is macroscopic and has to be con- 
structed from a multiplicity of microscopic interactions by some means, 
statistical or other. In current theory there seems little one can do about 
the micro-macro conflict, but in the approach we are now proposing 
physical magnitude is still undefined. Logically elementary operations and 
physically elementary ones cannot be differentiated by magnitude therefore, 
which requires the whole hierarchical structure for its understanding. 
The difficulty in our case--accordingly--is one for the imagination, rather 
than one which threatens logical coherence. 

When p = 0 the object is a point. We notice also that when we see a 
p-cycle z v we do not see any z~, with q > p. More precisely, we discriminate 
the set of p-cycles in a complex K~ + and at this stage we do not permit the 
observation of  any K~ + for q >p .  The point of this, in the mathematical 
theory, is that, otherwise, we could not be sure that the p-cycle is not a 
p-boundary, and that Zp is not empty (Dowker, 1952). 

The total number of objects discriminated is 

N =  fio + fi, + ' " + f t , - 1  

and this does not include the antipoint ~.  By using the existence of this 
upper bound we can identify a state of maximum discrimination as one in 
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which all the possible subsets of Zo can be discriminated. When this occurs 
tip = ~Cp+, and 

N = "CI + "C2 + - ' -  + "(7, = 2" - 1 

These developments lead us to identify a class of related physical objects 
with a set of homology groups Ho(K +) on a suitable complex (Hilton & 
Wylie, 1962), and the objects discriminated by S are generating elements 
of these homology groups. The complex K + [or K+(S) when we wish to 
specify the given experimental arrangement] possesses/30 + 1 verticles and 
is embedded in an abstract polyhedron possessing these same vertices. 

Our discussion has been based on the simplifying assumption that 
orientation of the complex is ignored, and in this case the appropriate chain 
complex is described by using J2 (the integers rood 2) as coefficients. 
Subsequently we shall suppose that the coefficients are in J (the integers). 
This will allow not only for the possibility of K + possessing orientation but 
also for the very natural role which we shall assign to the associated coho- 
mology groups. The Universal Coefficient Theorem (Hilton & Wylie, 1962) 
ensures that there is no loss in the correspondence we are setting up between 
structure and observation. 

3. Resolution of Scales and Hierarchical Structure 

Hierarchical structure arises out of an attempt (at the observational level) 
to increase the cardinality of Z0 through attempting to answer the following 
question. Given a scale S, with card Z0 = n, is it possible to find a scale S '  
which resolves the objects of S in the sense that these objects are to be seen 
as the points of S ' ?  If  S '  exists we shall refer to it as a resolution of  S, and 
we see at once that if card Zo = n' then in the special case of maximum 
discrimination for S, n' = 2" - 1 (Atkin, 1971 ; Bastin, 1966). 

The important result shown by Parker-Rhodes, namely, that the process 
of  resolution must cease after a finite number of steps, can now be seen 
as a limit to the extent to which we may permit S '  to be S itself. If S possesses 
only a minimum ability to record its various p-cycles (a minimum memory- 
store capacity) then we have to ask how often can it redefine its objects so 
that they become points. 

At the first level of operation, suppose that S is seeing the p-cycles Z~. 
Then it is effectively picking out sets of (p + 1) points from Z0. It may 
clearly do this, and keep a record of them, if it can order the original n 
points, and so attach ordinal numbers to the members of the (p + 1) set. 
This would only require a minimum of n places in the memory; these, 
together with the ordering attached to them, would suffice to record all 
the members of the Z r Since p takes n values we deduce that the minimum 
memory space for the whole operation on the basis that the original memory 
space were fixed, would be n 2. We therefore have the result: if S possesses 
maximum discrimination and minimum recording ability, resolution is possible 
i f  n2>~ 2 " - 1 .  This will be called maximal resolution. We can proceed 
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further in this way to construct further levels of discrimination on the 
basis that reference is always made back to the original memory store, and 
this basis provides a particularly realistic type of hierarchy. 

Commencing with the case n = 2 we obtain the sequence 

2 4 16 256 stop 

for the memory and 
3 7 127 ~ I 0  3s 

for maximal resolution, the latter giving us the cumulative sums 

3 10 137 ~1038 stop 

If we remove the condition of maximum discrimination but retain the 
minimum memory store we obtain the sequences 

ivl n 2 n 4 � 9  

and 
B B' . . .  

where B = N, and the B', etc. are suitably defined. 
The sequences of cardinalifies concerned in maximal resolution are 

likely to emerge in observational situations because of the orientation of 
physics towards refinement of description wherever this is possible. 
Working from the conventional view of physical magnitudes various writers 
have stressed the central importance of the coupling constants of the 
different physical fields--because of the way in which these dimensionless 
numbers fix the values of the natural atomic and cosmological constants, 
and hence of the natural units. This view is particularly associated with 
Eddington (see, for example, Relativity Theot T of  Protons and Electrons, 
1936, for an early statement). The calculation of the sequence for n = 2 above 
is not, of course, that put forward by Eddington. 

4. The Ring of  Coeyeles and Orthodox Measurement 

The central feature of orthodox methodology in physics is that the 
experimentalist refers all his observations to a common backcloth of 
observation. We shall represent this backcloth by a base homology on a 
background simpliciat complex (which we denote by BK§ This base 
complex is used to carry various physically intuitive notions. For example, 
the vertices of BK § (the points of the scale S) may be associated with the 
physically intuitive notion of 'geometrical point', or again, each may be 
associated with the physically intuitive notion of 'particle'; The 1-cycles of 
BK  + (defined by pairs of points on S) may be associated with the physically 
intuitive notion of velocity, linear momentum, plane wave motion (where 
we shall see that the wavelength idea is an attempt to characterise the point- 
pair separation), or geometrical line. The 2-cycles ofBK § may be associated 
with the notion of geometrical plane, angular momentum (the triangle with 
orientation), vector torque, electric or magnetic flux. The 3-cycles of BK + 
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may be associated with the notion of geometrical volume, a three-dimen- 
sional body in mechanics, or electric charge density. 

We have now, however, to make an important distinction. The base 
complex defines a kind of abstract structure for these physical concepts, t 
Thus it may describe magnetic field to the extent of specifying the structural 
complexity of that concept. We have said something vital about magnetic 
field when we have specified it in terms of the motion of a test-particle and 
required that the acceleration of the test-particle due to that field shall be 
at right-angles both to the direction of the field and the motion of  the 
particle. It  is not usual, however, for us to abstract this knowledge from 
such knowledge as the extent or degree of uniformity of the field, and 
indeed all the detailed knowledge that the physicist is accustomed to lump 
with it. Because this distinction is unfamiliar it is difficult. (It is not even 
certain that the concept of a test-particle will be interpreted the right way 
and will not evoke irrelevant questions concerning the structure of the 
test-particle or its practical feasibility.) Having established the distinction 
we now have to provide the detailed application of the abstract structure. 

Each of the physical notions associated with a particular observable 
p-cycle is to be represented in a precise mathematical way via a mapping 
which homomorphically maps that p-cycle into a suitable coefficient group. 
This means that the ordinary language of theoretical physics is to be the 
cohomology (Hilton & Wylie, 1962) of the base complex BK +, and we 
select the coefficient group, in the first instance, as the additive group of 
integers J. Thus every physical observation is to be represented in the 
theory by the cocycle mapping 

zp :Z~, -+ J 

on the relevant group of p-cycles, Z r These possible p-cocycles Z p act as 
generators for the cohomology group HP(K+;J), and we know that in 
the finite cases under consideration these groups are isomorphic to the 
homology groups Hp(K+). It is well known also that, since J possesses a 
ring structure, this graded cohomology group H.(K § also possesses a 
ring structure in which multiplication obeys the commutative law 

z p. z q = (-I)P~ z ~. z p 

where z p. z a is a cocycle in HP+q(K + ;J). 
As a matter of notation, the value of a cocycle z p on a particular cycle 

zp is usually written as (zp,zP); this is an integer in J. Thus, although all 
values of  physically observable things are 'merely' numbers, their essential 
differences are contained in the cocycles which map into these numbers. 
There is a qualitative difference between the physically intuitive notions 
which is expressed in the orders of the cocycles which represent them. 
We see too that our theory contains in it the possibility of emphasising the 
'value of a measurement' (an essentially classical view) or of emphasising 

tBastin & Kilmister (1952) introduced the expression 'theory-language' to describe the 
abstract structure of the interrelated concepts of mechanics and electromagnetism. 
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the observable as an homomorphism (or linear map), the latter view being 
essentially that of quantum theory. 

In the representation of a particular physics (Atkin, 1965), such as the 
dynamics of a set of classical bodies, the total information of the system 
will be contained in a complete set of cocycle generators which are defined 
on BK +. This set of generators will therefore define a ring of cocycles, and 
this ring will contain all the essential algebraic structure of the dynamics. 
Indeed, 'dynamics' for this system will be defined by this algebraic ring. 
We propose that such a complete set of cocycle generators for a particular 
system be called the Eddingtonian of the system. 

But what has happened, we might ask, to the ordinary experimentalist's 
idea of measuring a continuous variable--such as a galvanometer reading-- 
in the laboratory. In the first place we must point out that the experimentalist 
is never able to observe a continuous variable, that is, continuous in the 
mathematician's sense. When the physicist represents his galvanometer 
reading by a real number he imagines the following procedure to be justi- 
fiable, namely, 

O) BK+ possesses an uncountable set of vertices Z0; precisely, that 
card Z0 = the cardinality of the continuum of the reals, R. 

(ii) observation of the galvanometer current amounts to a map 

I ~ :Z0 -+ R 

In fact this procedure is operationally unrealistic. The actual experimental 
vertices of BK + are finite in number and are always determined by some 
choice implicit in the experimental method which effectively defines a 
limiting unit of observation. One may think of this limiting unit as the 
practical limit of resolution which selects a just-distinguishable pair of 
points. This is not to attribute absolute significance to the limit, only to 
stress that an experimental arrangement carries something like a charac- 
teristic length which determines the scope of its applicability. It must not, 
of course, be confused with the unit of 1 cm or 1 amp which is marked on 
the instrument. 

This limiting unit actually defines a 1-cycle zl in the base complex BK + 
and is mapped into the coefficient group J by the l-cocycle (say) I ~ which 
represents the object called 'current'. There will be a cocycle generator 
(say) l ~ such that every observation corresponds to the cocycle I ~ = nl ~, 
for a specific integer n. Th is /1  is the Eddingtonian for this particular 
observation. Incidentally, we notice that if we select some real number h 
to denote the value of the cocycle generator then the cocycles I ~ are being 
mapped into a coefficient group which is algebraically isomorphic to aT. 
In our theory the coefficient group is to be J up to isomorphism. 

Finally, we notice that the orthodox view of measurement contains 
another consequence which can be expressed in homological terms. This is 
the consequence of supposing that resolution is always possible and that 
it can be repeated an indefinite number of times. This means that all subsets 
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are Supposed to simultaneously discriminable (the use of the reals R is 
already a claim to this possibility, since they are in one-to-one corre- 
spondence with all subsets of the integers). Consequently the process of 
discrimination, as we have described it, does not contain the condition 
'when S sees the p-cycles Zp it does not see any z o for which q > p'. This 
means that, in the orthodox view, every cycle is a boundary in the homology 
theory, and the base homology is therefore trivial; Hp = 0, p > 0. 

It has been shown (Atkin, 1968), and will be discussed in more detail in 
a later paper, that natural laws in classical theoretical physics are illustra- 
tions of this assumption of trivial base homology when the base complex is 
supposed to represent space-time. 

5. Interpretation o f  Coeycle Generators on the Base Homology 

The present section examines the base homology of ordinary physics by 
a consideration of the Eddingtonian of several specific experimental 
situations. We look for the cocycle generator which is inherent in orthodox 
measurement situations, reminding ourselves that the values of a z" on a 
zp are in a ring isomorphic to J. 

Case 1. Length 

Usually the measurement of length l cm is presented as (l 4 -Al )  cm, 
where Al denotes the so-called 'error'. In fact, d l  is a number attached to 
the least resolvable point-pair, under the given experimental conditions. 
More precisely, this least resolvable point-pair must be the basic 1-cycle 
~l in the base complex B K  +, and the Al  is the value of the notion of length 
(in R) associated with that 1-cycle. Thus A l is associated with the required 
1-cocycle generator ~ of the length-measuring process. 

A significant dimensionless quantity associated with the length measure- 
ment is the so-called relative error d l . l -~ ;  accordingly, we define the 
cocycle generator ~l as the map whose value on ~l is the real number 

(~1,~ l) = A l . l - I  

Then any length measurement, L, will be a cocycle z ~, where z ~ = n~ 1 for a 
suitable n eJ .  Of course, the physical role of the Al  is to ensure that 
l = m(Al) ,  for a suitable m e J (which amounts to saying that measuring 
length is equivalent to counting packets--or quanta--of  Al). Then measur- 
ing L amounts to evaluating (zl, zl), where zl is the 1-cycle (the point-pair) 
defined on B K  + by the end-points of the 'thing' that has L ascribed to it. 
This zl will be homologous to the basic cycle ~l, and so we get 

(zl, z ~) = n( ~l, ~1) = n(Al. 1 -a) = n 
m 

Thus, measuring length on a geometrical axis amounts to mapping 
point-pairs into pairs of integers (n, m). These pairs of integers are symbols 

30 
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in the field of quotients of J, that is to say, in the rationals Q. Also, if k ~ 0 
and k ~ Q, we have that the length (n, m) satisfies the projective relation 

k(n ,m)= (kn, km) = (n,m) 

Furthermore, any length L can be represented symbolically over the two- 
dimensional module spanned by (0,1) and (1,0), via 

L -+ n(l, 0) + m(0, I) 

and the physical measurements which correspond to the base vectors 
(0,1) and (I,0) are 

(0, I) ~ length observed is AI, the least resolvable 

and 
(I, 0) -+ A1 = 0 

If we accept the latter condition as applicable to our geometrical axis we 
are actually saying that we believe that an infinite (although countable) 
sequence of subdivisions of a line is physically realisable. With this assump- 
tion it would follow that there is a bijective relation (a one-to-one onto 
mapping) between all measurable lengths and the rationals, and this implies 
that the geometricalaxis appears as aproiective lineP 1 It therefore possesses 
the homology 

//(/,~) = H0(P 1) | HI(P 1) 

with 1to = J and H~ = J. In particular it possesses a single basic 1-cycle 
(ill = 1) which generates J. 

Case 2. Wavelength Attributed to a Light Signal 

From the analysis of length measurement we see that the wavelength 
Acm plays the role of A/--the least resolvable 'distance' under the given 
experimental conditions. The cocycle generator ~1 associated with this 
object will then be the dimensionless number A/Ao, where ~0 will be a 
characteristic length. In what follows we shall make the simplifying assump- 
tion that ~o = 1 (which can be seen as defining the unit 1). 

Case 3. Diffraction Grating 

The observed plane is spanned by two geometrical axes whose indepen- 
dence means that we may form their cartesian product to obtain the base 
complex. One axis is characterised by the light signal with a cocycle 
generator ~1 (whose value on the basic ~t is taken as A), and the other by 
the grating length (say, L) and cocycle generator whose value is AL.L  -1 

L 
D 

X 
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The plane is therefore PL 1 • Pa 1, where (for example) PL l denotes the 
projective line specified by the grating length. Now, by the Kunneth 
Formula (Hilton & Wylie, 1962) we deduce the homology of the base 
complex as 

H(PL l x PA l) = Ho | H1 | H2 

where H0 = J, H1 = J @ J, and H2 = J. 
Since the homology is isomorphic to the cohomology we deduce that 

there is a 2-cocyde generator which takes a value equal to the product of 
the two separate 1-cocycle generators (because of the definition of the 
cohomology ring). The two 1-cocycle generators take values A L . L  -1 and 
respectively, so that we get the value of the 2-cocycle generator as 

(h ,  ~2) = (AL.L-I) .  O) 

But the plane is also defined as the cartesian product of the D-axis (distance 
of the screen from the grating) and the fringe pattern x-axis (x denoting 
the typical fringe width). In this case the two 1-cocycle generators take 
values A D .  D -1 and x. We therefore deduce, since ~2 is unique, 

A L . L  -x .)~ = A D . D  -a . x  

and provided L and D are measured under circumstances which permit us 
to take A L  = A D, we obtain 

x 
D L 

The apparent simplicity (even obviousness) of this calculation may 
mislead. In the present paper all the physical situations (with the partial 
exception of the galactic recession) involve only topologies which fit our 
ordinary views of space and time. We have in principle, however, opened 
up the possibility of changing the base complex B K  +, and when this is 
exploited we shall be confronted with cases which give counter-intuitive 
results. In the analysis of this section, the fact that the concept of wavelength 
has been introduced does not mean that the whole propagation theory has 
been assumed. On the contrary, the homology theory intersects with the 
familiar wave propagation theory only to a limited extent. 

6. Simplieial Maps  between Base Complexes K and K '  

If we imagine a change in the experimental conditions of observation 
then we would need to study the relation between the two base complexes 
involved. In particular the points which are observed (the 0-cycle objects) 
constitute the sets K 0 and Ko, and we have seen how the observation process 
builds on these sets to discriminate higher-order p-cycle objects. However, 
since it is the homology of the base complex which is physically significant 
it follows that we are particularly interested in the effect on the homologies 
as we change from one base complex K to another K'. 
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The mathematical transformations which relate K0 to K0, and sub- 
sequently K to K' and H(K +) to H(K'+), are the logical precursors of those 
transformations of space-time which ensure Lorentz or Riemann in- 
variance. The situation which corresponds to, say, Lorentz invariance 
must be one in which the transformation (or mapping) which relates K0 
to K~ induces an isomorphism between the homologies H(K +) and H(K'+). 
These mappings will be special cases of what are called simplieial maps 
(Hilton & Wylie, 1962), 

Precisely, a simplicial map ~b is a map ~b:K0 ~ K0 (that is, it maps the 
vertices of the complex K into the set of vertices of K') which satisfies the 
condition: 'whenever the vertices [a0, al . . . .  , ap] in K0 define a p-simplex in 
K, then the vertices [~ba0 . . . .  , ~bap] in K~ define a q-simplex in K',  for some 
q ~<p'. It can be shown (Hilton & Wylie, 1962) that such a map induces a 
homomorphism (which is of course a linear transformation) between 
II(K +) and H(K'+); this happens because ~b induces a well-behaved 
correspondence between the cycles of K and the cycles of K'.  This induced 
homomorphism is commonly written as ~,:H(K+)-+H(K'+), and 
consists of a series of maps {~b,. p} such that each ~b,, p is a homomorphism 
between Hp(K +) and Hp(K'+), p > O. 

The traditional idea of invariance corresponds, in this context, to the 
idea of  an isomorphism Hp(K +) ~ Hp(K'+). Physically this means that 
there are just as many p-cycle objects in K as in K' :  the changes in the 
experimental conditions hav e not created nor annihilated any observational 
objects, nor have they changed a p-cycle into a q-cycle. It does not mean, 
however, that there is necessarily an identity between the generators of 
H(K +) and H(K'+). A common example in orthodox theory is to be found 
in a rotation of the geometrical axes of euclidean space. 

Now this isomorphism can be shown to occur when the simplicial map 
~b:K0 ~ K o  is bijeetive, that is to say, ~b is (1-1) and onto. Precisely, ~b 
satisfies the conditions 

(i) ~bar = ~bas implies ar = a,, for any a~, a, ~ Ko, and 
(ii) for any vertex a' ~ K~ there exists some vertex a ~ K0 such that 

~ba = a'. 

Thus, a bijective simplicial map ~b induces an isomorphism ~b, between 
the base homologies. Since, moreover, a large part of physical observation 
consists in observing essentially the same base complex, bijective simplicial 
maps between Ko, Ko, K~',..., etc. can be expected to be of importance. 
Since the cohomologies and homologies are isomorphic, it follows that a 
bijective simplicial map will also induce an isomorphism between the 
cohomologies on the two base complexes. It is these bijective maps and the 
corresponding linear transformations between the higher-order sets of 
p-cocycles which correspond to the more usual theories of tensors and their 
covariance. 

Let us take as an example two complexes K and K'  which are observed 
geometrical axes possessing the homological structure of the projective line 
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p l. Then the coordinates x,  x '  (where these are rational numbers) denote 
the points of K0 and K0, respectively. Since Q is a division algebra we can 
use the mathematical result that the most general (1-1) correspondence 
between these lines, which is also a bijection, is the bilinear relation (also 
known as an homography) 

A x x '  + B x  + Cx'  + D = 0 

where A, B, C, D r Q and where A C  - B D  # 0.~( 
We notice that if the above bilinear relation is degenerate (i.e. when 

A C -  B D  = 0) then the relation between x and x' is not (1-1) onto, and 
so the base homologies cannot be isomorphic. Also, any other relation 
which is not (1-1) must correspond to a lack of isomorphism in the base 
homologies; for example, a relation of the form 

AX 3 x' + Bx  2 + CX' + D -~ 0 

means that there are generally three points in K0 mapped onto one point 
in Ko. We see too that the homography above leads in a natural way to 
the consideration of a quadratic f o r m - - w h e n  it is meaningful to allow 
x = x'. The linear maps from K v to/~% which preserve this quadratic form 
will now be compatible with the isomorphisms induced by the bilinear 
relation. 

An important example of the bilinear relation occurs in the velocity 
space of Lorentz-Einstein relativity theory. The unique status of the 
velocity of light becomes an expression of the bijective nature of the 
simpIiciat mappings which are allowed. The two sets of velocity measures 
v, v' along parallel axes which move with a relative velocity V amount to 
two base complexes K0, K0 being observed by two observers S and S ' .  
We therefore consider the bilinear relation 

Avv'  + Bv + Cv' + D = O  

The final form of this relation is obtained by using the observations 

(i) v = V ,  v '  = o 

(ii) v = 0, v' = - V  
(iii) v = v' = e 

whence 
Vvv' + cZ(v - v') - e 2 V - -  0 

We notice that the double points of the homography occur at • only one 
numerical value is therefore possible for this double point. This unique 
status for e is not merely an accident of observation. 

If, in addition, the observers S and S '  represent v and v' by the rational 
ratios x / t  and x ' / t '  then the homography is equivalent to the separate 
relations 

tThe role of the homography in classical physics was analysed by Atkin (1965), . 
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where fi is a separation constant, independent of x, x', t, t'. This is actually 
the first appearance of length and time variables x, t or x', t'. Unlike the 
velocities, they are undefined in this problem, and have no ext~rimentat 
meaning until they are given it, as we are now doing. The x and t occur in 
pairs for each v, and define 1-cycles to replace the O-cycles. It is an important 
characteristic of our approach that we are allowed to identify cycles with 
velocity relationships in, for example, the problem at present under dis- 
cussion and yet to identify cycles with lengths in the diffraction grating 
(Case 3). In neither case do we imagine that we are automatically setting 
up a manifold of physical operations which automatically includes the other. 
In so far as we need such a concept we have to set it up explicitly and exactly 
as we need it. 

x, t and x', t '  are contained in the linear map L defined by 

ct ]  ,ct ! ' \ - v / c  

and if we appeal to the fact that the roles of S and S' are reversed when V 
changes its sign, we obtain the condition 

L(--v) =L-I(+V) 

and this results in the condition 

32(1 V2~ -t =1 

We see too that the bilinear relation naturally leads to the condition on the 
quadratic form, namely, 

X 2 - -  C 2 t 2 = 0 

Allowed transformations, in space-time, must henceforward preserve this 
retation--a situation which is more general than saying that the quadratic 
jbrm x 2 - c 2 t 2 must be preserved. The invariance of the geometrical conic 
rather than of the form is in fact the basis of Weyt's (1918) gauge theory~ 
which therefore rests on the idea of bijeetive simpliciat maps. 

We now consider certain cases which illustrate the isomorphism between 
HI(K +) and HI (K  '+) consequent upon a change of base complex. Each 
isomorphism is expressed in terms of easy linear maps. 

Case 4. Modified Diffraction Grating 

In an experiment which has been discussed by Aharonov and Bohm, the 
beam of light, in an ordinary diffraction grating arrangement, is replaced 
by a beam of electrons, and solenoids are placed inside and co-axial with 
the bars of the grating. The physically significant thing is that there is an 
interaction between the beam and the magnetic field of the solenoids; this 
is manifest by a shift in the diffraction pattern. We obtain this change in 
the pattern by equating the physical dependence of  the beam and the 
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magnetic field to a linear dependence of their respective cocycle generators 
on the base complex. Referring to the notation introduced under Case 3, 
we now have a base complex which represents the plane system and which 
may be denoted symbolically by PL 1 • (Pa 1 § M), rather than by PL i • Pa I ; 
the symbol M denoting the magnetic field produced by the solenoids. The 
plus sign is to be interpreted by saying that the cocycle generators take the 
values 

A L . L  -1 corresponding to the term PL 1 

and 

+ e?~ corresponding to the term Pa ~ + M 

The cocycle generators for the cohomology groups Hl(Pa l) and HI(M) 
are now to be linearly dependent; the term eA corresponds to the latter. 
The factor ~ is a rational number, in Q, but it must not be an integer--if 
the physical dependence between the beam and the field is to be observed. 

Applying the argument of Case 3 we obtain the form of the new fringe 
pattern as 

x ;~ + ~2~ 
D L ' ~ r  

We notice that the effect of the magnetic field is solely manifest via its 
alteration of the cocycle generator at the level p = 1. That a corresponding 
physical interaction in fact exists, demonstrates that HI(M) ~ O, and this 
is true independently of the possible values of Hp(M), when p > 1. An 
observed phase shift in the diffraction pattern is an experimental demonstra- 
tion that the Eddingtonian for the magnetic field contains a generator ~l 
in the ring of cocycles on the base complex. If  we then look for a quantity 
in the orthodox continuum theory of the magnetic field which can illustrate 
this, we shall need a line integral whose value on a closed curve in the 
solenoid is not zero. This is the origin of Aharanov's 'modular momentum' 
and of the choice of the potential integral ~ A.dl to play the role of modular 
variable in this particular problem. 

Case 5. Doppler Effect 

The velocity which we attribute to a moving point, or particle, considered 
in relation to the light signal which gives us our information about it, 
specifies a cocyele--a 1-cocycle when the 0-cycles of the base complex refer 
to geometrical points. If  the moving object occupies points A and B, in 
that order, in a standard unit of time then the light signal 'interacts' with 
that geometrical 1-cycle in conveying the information to the observer. The 
interaction manifests itself in the theory, as in Case 4, through a linear map 
defining an isomorphism between the base complexes. The base complex is 
finally a combination which is symbolically expressed as Pa I + P0 l, where 
P01 denotes the geometrical object-axis, and the 1-cocycle generator for 
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H I ( B K  +) will now take a value )t + e;t, for a suitable non-integral value of 
e, inQ.  

The Lorentz-Einstein relativity theory (see above) gives, by a well-known 
argument, 

/ / 1  + ( lc) t 
1 + ~ = 4tl @/c)j 

o r  

l + e = l +  -v when v ~ c  
c 

We see that the Doppler effect is homologically the same problem as the 
modified diffraction grating. Each illustrates the occurrence of a physical 
dependence at the same homological level (p = 1), and this dependence is 
an expression of an isomorphic change in the base homology. 

Case 6. Galactic Recession 

This has an immediate interpretation via the Doppler Effect, and this 
is the basis for the orthodox view that the red shift (h '-) t) /A must be 
interpreted by saying that the source has a velocity v (= L/T, say) away 
from the grating. This is usually expressed as, for example, 

/1'--/l v L 
h c cT'  

when v ~ c 

T being the Hubble constant. 
We can now see that this shift in wavelength is due to an isomorphism 

between HI(Pa 1) and HI(Pa ~ + Pol). It is not necessary for this 1-cocycle 
generator in H~(Po5 to be due to velocity, although, of course, it is certainly 
sufficient to say so. (The experiments of Pound & Rebka (1960) on the 
Mossbauer effect have similarly illustrated the above process with the 
interaction of gamma rays with a gravitational field--at the l-cocycle 
level.) 

The case of the galactic recession is of very great importance, because 
the physical circumstances that would make the conventional successive 
approximation methods plausible do not exist (see McCrea's discussion 
of whether or not the galactic recession indicates a systematic information 
cut-off analogous to that indicated by the existence of Planck's constant). 
Hence the galactic case is one which fits the homology theory naturally and 
the conventional theory not at all. More fundamentally this case provides 
quantisation in the sense that it introduces a numerical value for the 
galactic constants in terms of the microscopic ones, through the dimension- 
less constants in the manner which Eddington conjectured should be used, 
but employing a-system of dynamics within which such an appearance of a 
pure number with experimental interpretation is credible. 
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The number which arises as the order of the largest discriminable set in 
the hierarchy of resolutions (N ~ 1039) is a limit to the possibility of 
extending the base homology. It arises when the base homology is used to 
define a method of measurement and when progressive refinement of 
experiment is pushed to the limit. In the current discussion of galactic 
recession this number is automatically interpreted as a length ratio (one 
may speak of the ratio of the electron radius to the radius of the universe). 
By applying the interaction theory we have developed for the Bohm/ 
Aharonov experiment we get the following picture. 

(1) Conventional theory ascribes a recession as the interpretation of the 
red shift. 

(2) Correct analysis of the homological structure shows the existence of a 
second cocycle generator, and therefore one could have an equally physically 
correct account with a cosmical electrodynamical effect, exactly by analogy 
with the Bohm-Aharonov case. 

(3) The strength of the interaction is to be specified in the cohomology 
on the base complex--which remains isomorphic to itself. There is actually 
a lower bound to the interaction strength which corresponds to the true 
picture being a linear combination of two cocycles. Hence it is not possible 
for the physicist to assert that the recession picture is physically the real 
one, because what he means when he says this is that he can take a new 
embedding complex to get rid of the physical interaction. It is just a part 
of our convention that we always do this when we are dealing with space 
(or length) but that we preserve the interaction when we have an electro- 
magnetic case to deal with. It does mean, however, that we are at a loss to 
understand the cosmical information limit. 

Our treatment recalls an original argument that was advanced in favour 
of the steady-state theory. It was argued that if the universe were not in a 
steady state then we ought to contemplate such a wide range of possible 
laws that we should have no fixed starting point. This contention was 
plausible but one could not further deduce--as one would wish--from the 
implausibility of such chaos, a case for the steady state. The argument that 
the steady-state theorists were sensing, but lacking, was the possibility 
of arguing that the steady-state model specified a more correct base homo- 
logy than the current (implicit) homology. For  it is impossible to present 
the galactic recession as an interaction between 1-cocycles if the base 
complex is a sphere (which has no 1-cycles). 

It is also possible to regard the cosmological tradition which started with 
Milne as having been concerned with the choice of a base complex. A recent 
exponent of this tradition, Prokhovnik (1970), has used the Milne (1948) 
substratum hypothesis to review special relativity, and in so doing he makes 
it especially clear that he gets his results by having the primitive operational 
statement of special relativity (which is in terms of relative motion with 
respect to an observer) supplemented by a statement of motion with 
respect to the substratum. It is very natural to see this change as essentially 
a search for a non-trivial base homology. 
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